Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Allergy Clin Immunol ; 147(1): 81-91, 2021 01.
Article in English | MEDLINE | ID: covidwho-2095538

ABSTRACT

BACKGROUND: Severe immunopathology may drive the deleterious manifestations that are observed in the advanced stages of coronavirus disease 2019 (COVID-19) but are poorly understood. OBJECTIVE: Our aim was to phenotype leukocyte subpopulations and the cytokine milieu in the lungs and blood of critically ill patients with COVID-19 acute respiratory distress syndrome (ARDS). METHODS: We consecutively included patients less than 72 hours after intubation following informed consent from their next of kin. Bronchoalveolar lavage fluid was evaluated by microscopy; bronchoalveolar lavage fluid and blood were assessed by 10-color flow cytometry and a multiplex cytokine panel. RESULTS: Four mechanically ventilated patients (aged 40-75 years) with moderate-to-severe COVID-19 ARDS were included. Immature neutrophils dominated in both blood and lungs, whereas CD4 and CD8 T-cell lymphopenia was observed in the 2 compartments. However, regulatory T cells and TH17 cells were found in higher fractions in the lung. Lung CD4 and CD8 T cells and macrophages expressed an even higher upregulation of activation markers than in blood. A wide range of cytokines were expressed at high levels both in the blood and in the lungs, most notably, IL-1RA, IL-6, IL-8, IP-10, and monocyte chemoattactant protein-1, consistent with hyperinflammation. CONCLUSION: COVID-19 ARDS exhibits a distinct immunologic profile in the lungs, with a depleted and exhausted CD4 and CD8 T-cell population that resides within a heavily hyperinflammatory milieu.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lung/immunology , Lymphopenia/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Th17 Cells/immunology , Adult , Aged , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Cross-Sectional Studies , Cytokines/immunology , Female , Humans , Immunophenotyping , Lung/pathology , Lymphopenia/pathology , Male , Middle Aged , Respiratory Distress Syndrome/pathology , Th17 Cells/pathology
2.
J Allergy Clin Immunol ; 149(2): 455-465, 2022 02.
Article in English | MEDLINE | ID: covidwho-1676782

ABSTRACT

Severe asthma is a heterogeneous disease encompassing different phenotypes and endotypes. Although patients with severe asthma constitute a small proportion of the total population with asthma, they largely account for the morbidity and mortality associated with asthma, indicating a clear unmet need. Being distinct from mild and moderate disease, new insights into the immunopathogenesis of severe asthma are needed. The disease endotypes have provided better insights into the immunopathogenic mechanisms underlying severe asthma. Current stratified approach of treating severe asthma based on phenotypes is met with shortcomings, necessitating unbiased multidimensional endotyping to cope with disease complexity. Therefore, in this review, we explore the distinct endotypes and their mechanistic pathways that characterize the heterogeneity observed in severe asthma.


Subject(s)
Asthma/immunology , Airway Remodeling , Asthma/etiology , Asthma/therapy , Autophagy/physiology , Bronchial Thermoplasty , Humans , Mitochondria/physiology , Obesity/complications , Th17 Cells/immunology , Th2 Cells/immunology
3.
Scand J Immunol ; 95(2): e13131, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1583260

ABSTRACT

The role of the immune system against coronavirus disease 2019 (COVID-19) is unknown in many aspects, and the protective or pathologic mechanisms of the immune response are poorly understood. Pro-inflammatory cytokine release and a consequent cytokine storm can lead to acute respiratory distress syndrome (ARDS) and result in multi-organ failure. There are many T cell subsets during anti-viral immunity. The Th17-associated response, as a pro-inflammatory pathway, and its consequent outcomes in many autoimmune disorders play a fundamental role in progression of systemic hyper-inflammation during COVID-19. Therapeutic strategies based on immunomodulation therapy could be helpful for targeting hyper-inflammatory immune responses in COVID-19, especially Th17-related inflammation and hyper-cytokinemia. Cell-based immunotherapeutic approaches including mesenchymal stem cells (MSCs), tolerogenic dendritic cells (tolDCs) and regulatory T cells (Tregs) seem to be promising strategies as orchestrators of the immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we highlight Th17-related immunopathology of SARS-CoV-2 infection and discuss cell-based immunomodulatory strategies and their mechanisms for regulation of the hyper-inflammation during COVID-19.


Subject(s)
COVID-19/pathology , COVID-19/therapy , Cytokine Release Syndrome/pathology , Immunomodulation/immunology , Th17 Cells/immunology , Adoptive Transfer/methods , COVID-19/immunology , Cell- and Tissue-Based Therapy/methods , Cytokines/blood , Dendritic Cells/transplantation , Humans , Mesenchymal Stem Cell Transplantation , SARS-CoV-2/immunology , T-Lymphocytes, Regulatory/transplantation
4.
Front Cell Infect Microbiol ; 11: 624483, 2021.
Article in English | MEDLINE | ID: covidwho-1574395

ABSTRACT

The immune response type organized against viral infection is determinant in the prognosis of some infections. This work has aimed to study Th polarization in acute COVID-19 and its possible association with the outcome through an observational prospective study. Fifty-eight COVID-19 patients were recruited in the Medicine Department of the hospital "12 de Octubre," 55 patients remaining after losses to follow-up. Four groups were established according to maximum degree of disease progression. T-helper cell percentages and phenotypes, analyzed by flow cytometer, and serum cytokines levels, analyzed by Luminex, were evaluated when the microbiological diagnosis (acute phase) of the disease was obtained. Our study found a significant reduction of %Th1 and %Th17 cells with higher activated %Th2 cells in the COVID-19 patients compared with reference population. A higher percent of senescent Th2 cells was found in the patients who died than in those who survived. Senescent Th2 cell percentage was an independent risk factor for death (OR: 13.88) accompanied by the numbers of total lymphocytes (OR: 0.15) with an AUC of 0.879. COVID-19 patients showed a profile of pro-inflammatory serum cytokines compared to controls, with higher levels of IL-2, IL-6, IL-15, and IP-10. IL-10 and IL-13 were also elevated in patients compared to controls. Patients who did not survive presented significantly higher levels of IL-15 than those who recovered. No significant differences were observed according to disease progression groups. The study has shown that increased levels of IL-15 and a high Th2 response are associated with a fatal outcome of the disease.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Aged , COVID-19/blood , COVID-19/pathology , Cytokines/blood , Disease Progression , Female , Humans , Immunity , Male , Middle Aged , Multivariate Analysis , Prospective Studies , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology
5.
Int Immunopharmacol ; 102: 108383, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1521087

ABSTRACT

BACKGROUNDS: To date, the effects of SARS-CoV-2 vaccines on people living with HIV (PLWH) were mainly focused on messenger RNA (mRNA) and adenovirus vector-based vaccines, and little is known about the effects of inactivated virus-based vaccine. This study was designed to determine the effects of inactivated SARS-CoV-2 vaccines on PLWH. METHODS: Twenty-four HIV-positive individuals and 24 healthy donors (HD) were respectively recruited from Malipo Country People's Hospital and community in Kunming city. Enumeration of lymphocyte and CD4+CD45RO+ memory T cells were evaluated by flow cytometry. Competitive ELISA was used to measure the level of Anti-SARS-CoV-2 neutralization antibody. Spearman or Pearson correlation analysis was used to analyze the relationship between laboratory indicators and neutralization antibodies in PLWH. T-cell responses (Th1, Th2, Th17, Treg) and intracellular expression of cytokines (IL-2 and TNF-α) in CD4 or CD8 were induced by spike protein in SARS-CoV-2 (SARS-2-S) and further measured by intracellular staining. RESULTS: CD4, B cells, CD4+CD45RO+ memory T cells in peripheral blood of PLWH are dramatically decreased in comparison with HD. Importantly, PLWH display comparable neutralizing antibody positive rate to HD after inoculation with inactivated SARS-CoV-2 vaccine. However, PLWH showed weaker responses to vaccines exhibited by lower levels of neutralizing antibodies. Correlation analysis shows that this is possibly caused by low number of CD4 and B cells. Furthermore, SARS-2-S-induced Th2 and Th17 responses are also decreased in PLWH, while no influences on Treg and other cytokines (IL-2, TNF-α and IFN-γ) observed. CONCLUSIONS: PLWH and HD have comparable neutralizing antibodies positive rates, but PLWH display weaker responses to inactivated SARS-CoV-2 vaccines in magnitude, which suggests that a booster dose or dose adjustment are required for HIV-infected individuals, especially for those with lower counts of CD4 T and B cells.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , HIV Infections/immunology , Vaccines, Inactivated/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , HIV Infections/blood , HIV Infections/complications , Healthy Volunteers , Humans , Immunogenicity, Vaccine , Male , Memory T Cells/immunology , Middle Aged , SARS-CoV-2/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Vaccines, Inactivated/administration & dosage
6.
Front Immunol ; 12: 732992, 2021.
Article in English | MEDLINE | ID: covidwho-1497075

ABSTRACT

Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Autoimmune Diseases/drug therapy , Autoimmunity/drug effects , Dendritic Cells/drug effects , Immune Tolerance/drug effects , Inflammation/drug therapy , Neutrophils/drug effects , Th17 Cells/drug effects , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
7.
Viruses ; 13(10)2021 09 30.
Article in English | MEDLINE | ID: covidwho-1444330

ABSTRACT

BACKGROUND: The immunological changes associated with COVID-19 are largely unknown. METHODS: Patients with COVID-19 showing moderate (n = 18; SpO2 > 93%, respiratory rate > 22 per minute, CRP > 10 mg/L) and severe (n = 23; SpO2 < 93%, respiratory rate >30 per minute, PaO2/FiO2 ≤ 300 mmHg, permanent oxygen therapy, qSOFA > 2) infection, and 37 healthy donors (HD) were enrolled. Circulating T- and B-cell subsets were analyzed by flow cytometry. RESULTS: CD4+Th cells were skewed toward Th2-like phenotypes within CD45RA+CD62L- (CM) and CD45RA-CD62L- (EM) cells in patients with severe COVID-19, while CM CCR6+ Th17-like cells were decreased if compared with HD. Within CM Th17-like cells "classical" Th17-like cells were increased and Th17.1-like cells were decreased in severe COVID-19 cases. Circulating CM follicular Th-like (Tfh) cells were decreased in all COVID-19 patients, and Tfh17-like cells represented the most predominant subset in severe COVID-19 cases. Both groups of patients showed increased levels of IgD-CD38++ B cells, while the levels of IgD+CD38- and IgD-CD38- were decreased. The frequency of IgD+CD27+ and IgD-CD27+ B cells was significantly reduced in severe COVID-19 cases. CONCLUSIONS: We showed an imbalance within almost all circulating memory Th subsets during acute COVID-19 and showed that altered Tfh polarization led to a dysregulated humoral immune response.


Subject(s)
B-Lymphocyte Subsets/immunology , COVID-19/immunology , Immunity , SARS-CoV-2 , ADP-ribosyl Cyclase 1 , Adult , Aged , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Flow Cytometry , Humans , Immunoglobulin D , Male , Middle Aged , Oxygen , Receptors, CCR6 , T-Lymphocytes/metabolism , Th17 Cells/immunology
8.
Bioessays ; 43(2): e2000232, 2021 02.
Article in English | MEDLINE | ID: covidwho-1372696

ABSTRACT

Immunity against SARS-CoV-2 that is acquired by convalescent COVID-19 patients is examined in reference to (A) the Th17 cell generation system in psoriatic epidermis and (B) a recently discovered phenomenon in which Th17 cells are converted into tissue-resident memory T (TRM ) cells with Th1 phenotype. Neutrophils that are attracted to the site of infection secrete IL-17A, which stimulates lung epithelial cells to express CCL20. Natural Th17 (nTh17) cells are recruited to the infection site by CCL20 and expand in the presence of IL-23. These nTh17 cells are converted to TRM cells upon encounter with SARS-CoV-2 and continue to exist as ex-Th17 cells, which exert Th1-like immunity during a memory response. G-CSF can induce nTh17 cell accumulation at the infection site because it promotes neutrophil egress from the bone marrow. Hence, G-CSF may be effective against COVID-19. Administration of G-CSF to patients infected with SARS-CoV-2 is worth a clinical trial.


Subject(s)
Granulocyte Colony-Stimulating Factor/therapeutic use , Neutrophils/immunology , SARS-CoV-2/immunology , Th1 Cells/immunology , Th17 Cells/immunology , COVID-19/immunology , Chemokine CCL20/metabolism , Humans , Immunologic Memory/immunology , Interleukin-17/metabolism , Interleukin-23 Subunit p19/immunology , Neutrophils/drug effects , Th17 Cells/drug effects , COVID-19 Drug Treatment
9.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1346498

ABSTRACT

Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.


Subject(s)
Bordetella Infections/immunology , Bordetella bronchiseptica/immunology , Eosinophils/immunology , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Microbiota/immunology , Animals , Humans , Th17 Cells/immunology , Th2 Cells/immunology
10.
J Immunol ; 207(4): 1099-1111, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1328168

ABSTRACT

Understanding the function of SARS-CoV-2 Ag-specific T cells is crucial for the monitoring of antiviral immunity and vaccine design. Currently, both impaired and robust T cell immunity is described in COVID-19 patients. In this study, we explored and compared the effector functions of SARS-CoV-2-reactive T cells expressing coinhibitory receptors and examine the immunogenicity of SARS-CoV-2 S, M, and N peptide pools in regard to specific effector T cell responses, Th1/Th2/Th17, in COVID-19 patients. Analyzing a cohort of 108 COVID-19 patients with mild, moderate, and severe disease, we observed that coinhibitory receptors (e.g., PD-1, CTLA-4, TIM-3, VISTA, CD39, CD160, 2B4, TIGIT, Gal-9, and NKG2A) were upregulated on both CD4+ and CD8+ T cells. Importantly, the expression of coinhibitory receptors on T cells recognizing SARS-CoV-2 peptide pools (M/N/S) was associated with increased frequencies of cytokine-producing T cells. Thus, our data refute the concept of pathological T cell exhaustion in COVID-19 patients. Despite interindividual variations in the T cell response to viral peptide pools, a Th2 phenotype was associated with asymptomatic and milder disease, whereas a robust Th17 was associated with severe disease, which may potentiate the hyperinflammatory response in patients admitted to the Intensive Care Unit. Our data demonstrate that T cells may either play a protective or detrimental role in COVID-19 patients. This finding could have important implications for immune correlates of protection, diagnostic, and prophylaxis with respect to COVID-19 management.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Adult , Aged , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Lymphocyte Activation/immunology , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Viral Matrix Proteins/immunology
11.
Front Immunol ; 11: 580304, 2020.
Article in English | MEDLINE | ID: covidwho-1256375

ABSTRACT

Gamma-delta (γδ) T cells are a subset of T cells that promote the inflammatory responses of lymphoid and myeloid lineages, and are especially vital to the initial inflammatory and immune responses. Given the capability to connect crux inflammations of adaptive and innate immunity, γδ T cells are responsive to multiple molecular cues and can acquire the capacity to induce various cytokines, such as GM-CSF, IL-4, IL-17, IL-21, IL-22, and IFN-γ. Nevertheless, the exact mechanisms responsible for γδ T cell proinflammatory functions remain poorly understood, particularly in the context of the central nervous system (CNS) diseases. CNS disease, usually leading to irreversible cognitive and physical disability, is becoming a worldwide public health problem. Here, we offer a review of the neuro-inflammatory and immune functions of γδ T cells, intending to understand their roles in CNS diseases, which may be crucial for the development of novel clinical applications.


Subject(s)
Central Nervous System Diseases/immunology , Inflammation/immunology , Intraepithelial Lymphocytes/immunology , Th17 Cells/immunology , Animals , Central Nervous System , Cytokines/metabolism , Humans , Immunity, Innate , Receptors, Antigen, T-Cell, gamma-delta/metabolism
12.
Int Immunopharmacol ; 97: 107828, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1253058

ABSTRACT

In various pathological conditions, cellular immunity plays an important role in immune responses. Amongimmunecells, T lymphocytes pdomotecellular and humoralresponses as well as innate immunity. Therefore, careful investigation of these cells has a significant impact on accurate knowledge in COVID-19diseasepathogenesis. In current research, the frequency and function of various T lymphocytes involved in immune responses examined in SARS-CoV-2 patients with various disease severity compared to normal subjects. In order to make an accurate comparison among patients with various disease severity, this study was performed on asymptomatic recovered cases (n = 20), ICU hospitalized patients (n = 30), non-ICU hospitalized patients (n = 30), and normal subjects (n = 20). To precisely evaluate T cells activity following purification, their cytokine secretion activity was examined. Similarly, immediately after purification of Treg cells, their inhibitory activity on T cells was investigated. The results showed that COVID-19 patients with severe disease (ICU hospitalized patients) not only had a remarkable increase in Th1 and Th17 but also a considerable decrease in Th2 and Treg cells. More importantly, as the IL-17 and IFN-γ secretion was sharply increased in severe disease, the secretion of IL-10 and IL-4 was decreased. Furthermore, the inhibitory activity of Treg cells was reduced in severe disease patients in comparison to other groups. In severe COVID-19 disease, current findings indicate when the inflammatory arm of cellular immunity is significantly increased, a considerable reduction in anti-inflammatory and regulatory arm occurred.


Subject(s)
COVID-19/blood , COVID-19/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Adult , Aged , Cytokines/immunology , Cytokines/metabolism , Female , Healthy Volunteers , Humans , Immunity, Cellular , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-4/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Male , Middle Aged , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult
13.
EMBO Mol Med ; 13(6): e14045, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1219070

ABSTRACT

The immune responses and mechanisms limiting symptom progression in asymptomatic cases of SARS-CoV-2 infection remain unclear. We comprehensively characterized transcriptomic profiles, cytokine responses, neutralization capacity of antibodies, and cellular immune phenotypes of asymptomatic patients with acute SARS-CoV-2 infection to identify potential protective mechanisms. Compared to symptomatic patients, asymptomatic patients had higher counts of mature neutrophils and lower proportion of CD169+ expressing monocytes in the peripheral blood. Systemic levels of pro-inflammatory cytokines were also lower in asymptomatic patients, accompanied by milder pro-inflammatory gene signatures. Mechanistically, a more robust systemic Th2 cell signature with a higher level of virus-specific Th17 cells and a weaker yet sufficient neutralizing antibody profile against SARS-CoV-2 was observed in asymptomatic patients. In addition, asymptomatic COVID-19 patients had higher systemic levels of growth factors that are associated with cellular repair. Together, the data suggest that asymptomatic patients mount less pro-inflammatory and more protective immune responses against SARS-CoV-2 indicative of disease tolerance. Insights from this study highlight key immune pathways that could serve as therapeutic targets to prevent disease progression in COVID-19.


Subject(s)
COVID-19/pathology , Carrier State/immunology , Biomarkers/metabolism , Brain-Derived Neurotrophic Factor/metabolism , COVID-19/immunology , COVID-19/virology , Carrier State/pathology , Carrier State/virology , Cytokines/metabolism , Humans , Monocytes/cytology , Monocytes/immunology , Monocytes/metabolism , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/metabolism , SARS-CoV-2/isolation & purification , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism , Transcriptome , Up-Regulation , Vascular Endothelial Growth Factor D/metabolism
14.
J Leukoc Biol ; 109(1): 73-76, 2021 01.
Article in English | MEDLINE | ID: covidwho-1188011

ABSTRACT

From the beginning of 2020, an urgent need to understand the pathophysiology of SARS-CoV-2 disease (COVID-19), much of which is due to dysbalanced immune responses, resonates across the world. COVID-19-associated neutrophilia, increased neutrophil-to-lymphocyte ratio, aberrant neutrophil activation, and infiltration of neutrophils into lungs suggest that neutrophils are important players in the disease immunopathology. The main objective of this study was to assess the phenotypic and functional characteristics of neutrophils in COVID-19 patients, with particular focus on the interaction between neutrophils and T cells. We hypothesize that the altered functional characteristics of COVID-19 patient-derived neutrophils result in skewed Th1/Th17 adaptive immune response, thus contributing to disease pathology. The expansion of G-MDSC and immature forms of neutrophils was shown in the COVID-19 patients. In the COVID-19 neutrophil/T cell cocultures, neutrophils caused a strong polarity shift toward Th17, and, conversely, a reduction of IFNγ-producing Th1 cells. The Th17 promotion was NOS dependent. Neutrophils, the known modulators of adaptive immunity, skew the polarization of T cells toward the Th17 promotion and Th1 suppression in COVID-19 patients, contributing to the discoordinated orchestration of immune response against SARS-CoV-2. As IL-17 and other Th17-related cytokines have previously been shown to correlate with the disease severity, we suggest that targeting neutrophils and/or Th17 represents a potentially beneficial therapeutic strategy for severe COVID-19 patients.


Subject(s)
COVID-19/immunology , Interleukin-17/immunology , Neutrophil Activation , Neutrophils/immunology , SARS-CoV-2/immunology , Th17 Cells/immunology , COVID-19/pathology , Humans , Neutrophils/pathology , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/pathology
15.
Front Immunol ; 12: 645741, 2021.
Article in English | MEDLINE | ID: covidwho-1190313

ABSTRACT

Particulate matter (PM) induces neutrophilic inflammation and deteriorates the prognosis of diseases such as cardiovascular diseases, cancers, and infections, including COVID-19. Here, we addressed the role of γδ T cells and intestinal microbiome in PM-induced acute neutrophilia. γδ T cells are a heterogeneous population composed of Tγδ1, Tγδ2, Tγδ17, and naïve γδ T cells (TγδN) and commensal bacteria promote local expansion of Tγδ17 cells, particularly in the lung and gut without affecting their Vγ repertoire. Tγδ17 cells are more tissue resident than Tγδ1 cells, while TγδN cells are circulating cells. IL-1R expression in Tγδ17 cells is highest in the lung and they outnumber all the other type 17 cells such as Th17, ILC3, NKT17, and MAIT17 cells. Upon PM exposure, IL-1ß-secreting neutrophils and IL-17-producing Tγδ17 cells attract each other around the airways. Accordingly, PM-induced neutrophilia was significantly relieved in γδ T- or IL-17-deficient and germ-free mice. Collectively, these findings show that the commensal microbiome promotes PM-induced neutrophilia in the lung via Tγδ17 cells.


Subject(s)
Leukocytosis/etiology , Lung/immunology , Microbiota , Neutrophils/pathology , Particulate Matter/adverse effects , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Asthma/etiology , Asthma/metabolism , Asthma/pathology , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Immunity, Innate , Immunophenotyping , Leukocytosis/metabolism , Leukocytosis/pathology , Lung/metabolism , Lung/pathology , Mice , Neutrophils/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
16.
APMIS ; 129(5): 271-279, 2021 May.
Article in English | MEDLINE | ID: covidwho-1165803

ABSTRACT

There is very little knowledge about the immune responses, particularly cellular immunity to coronavirus disease 2019 (COVID-19). The main objective of this study was to evaluate the frequency of T helper (Th) cell subtypes, including Th1, Th17, and Treg cells, in moderate-to-severe and critical COVID-19 patients compared to healthy controls. Twenty-nine moderate-to-severe and 13 critical patients confirmed for COVID-19, and 15 healthy subjects were included in this study. Interferon-γ (IFN-γ)-producing Th1 and interleukin-17A-producing Th17 and Treg cells in peripheral blood were measured with flow cytometry. The frequency of Th1 and Th17 was significantly decreased in critical patients compared to healthy subjects (aMD: -2.76 and - 2.34) and moderate-to-severe patients (aMD: -1.89 and - 1.89), respectively (p < 0.05). Differences were not significant between moderate-to-severe patients and healthy subjects for both Th1 (p = 0.358) and Th17 (p = 0.535), respectively. In contrast, significant difference was not observed between study subjects regarding the frequency of Treg cells. Patients with critical COVID-19 had a markedly lower Th1/Treg and Th17/Treg ratios compared with the controls and moderate-to-severe cases. Our study showed a dysregulated balance of Th1 and Th17 cells and its relation to the severity of COVID-19.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Adolescent , Adult , Aged , Aged, 80 and over , CD4 Lymphocyte Count , COVID-19/pathology , Critical Illness , Female , Flow Cytometry , Humans , Interferon-gamma/biosynthesis , Interleukin-17/biosynthesis , Male , Middle Aged , Severity of Illness Index , Young Adult
17.
Life Sci ; 276: 119437, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157592

ABSTRACT

In Coronavirus disease 2019 (COVID-19), a decreased number of regulatory T (Treg) cells and their mediated factors lead to a hyperinflammatory state due to overactivation of the inflammatory cells and factors during the infection. In the current study, we evaluated the Nanocurcumin effects on the Treg cell population and corresponding factors in mild and severe COVID-19 patients. To investigate the Nanocurcumin effects, 80 COVID-19 patients (40 at the severe stage and 40 at the mild stage) were selected and classified into Nanocurcumin and placebo arms. In both the Nanocurcumin and placebo groups, the Treg cell frequency, the gene expression of Treg transcription factor forkhead box P3 (FoxP3), and cytokines (IL-10, IL-35, and TGF-ß), as well as the serum levels of cytokines were measured before and after treatment. In both mild and severe COVID-19 patients, Nanocurcumin could considerably upregulate the frequency of Treg cells, the expression levels of FoxP3, IL-10, IL-35, and TGF-ß, as well as the serum secretion levels of cytokines in the Nanocurcumin-treated group compared to the placebo group. The abovementioned factors were remarkably increased in the post-treatment with Nanocurcumin before pre-treatment conditions. By contrast, it has been observed no notable alteration in the placebo group. Our findings revealed the SinaCurcumin® effective function in a significant increase in the number of Treg cells and their mediated factors in the Nanocurcumin group than in the placebo group in both mild and severe patients. Hence, it would be an efficient therapeutic agent in rehabilitating COVID-19 infected patients.


Subject(s)
COVID-19 Drug Treatment , Curcumin/pharmacology , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , COVID-19/immunology , COVID-19/virology , Cytokines/drug effects , Cytokines/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Humans , Interleukin-10/immunology , Interleukins/immunology , Male , Middle Aged , Nanomedicine/methods , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/immunology
18.
PLoS Pathog ; 17(3): e1009416, 2021 03.
Article in English | MEDLINE | ID: covidwho-1156080

ABSTRACT

COVID-19 is characterized by respiratory symptoms of various severities, ranging from mild upper respiratory signs to acute respiratory failure/acute respiratory distress syndrome associated with a high mortality rate. However, the pathophysiology of the disease is largely unknown. Shotgun metagenomics from nasopharyngeal swabs were used to characterize the genomic, metagenomic and transcriptomic features of patients from the first pandemic wave with various forms of COVID-19, including outpatients, patients hospitalized not requiring intensive care, and patients in the intensive care unit, to identify viral and/or host factors associated with the most severe forms of the disease. Neither the genetic characteristics of SARS-CoV-2, nor the detection of bacteria, viruses, fungi or parasites were associated with the severity of pulmonary disease. Severe pneumonia was associated with overexpression of cytokine transcripts activating the CXCR2 pathway, whereas patients with benign disease presented with a T helper "Th1-Th17" profile. The latter profile was associated with female gender and a lower mortality rate. Our findings indicate that the most severe cases of COVID-19 are characterized by the presence of overactive immune cells resulting in neutrophil pulmonary infiltration which, in turn, could enhance the inflammatory response and prolong tissue damage. These findings make CXCR2 antagonists, in particular IL-8 antagonists, promising candidates for the treatment of patients with severe COVID-19.


Subject(s)
COVID-19 , Genome, Viral , Metagenomics , SARS-CoV-2 , Th1 Cells/immunology , Th17 Cells/immunology , Transcriptome , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
19.
J Mol Cell Biol ; 13(3): 197-209, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1145182

ABSTRACT

Although millions of patients have clinically recovered from COVID-19, little is known about the immune status of lymphocytes in these individuals. In this study, the peripheral blood mononuclear cells of a clinically recovered (CR) cohort were comparatively analyzed with those of an age- and sex-matched healthy donor cohort. We found that CD8+ T cells in the CR cohort had higher numbers of effector T cells and effector memory T cells but lower Tc1 (IFN-γ+), Tc2 (IL-4+), and Tc17 (IL-17A+) cell frequencies. The CD4+ T cells of the CR cohort were decreased in frequency, especially the central memory T cell subset. Moreover, CD4+ T cells in the CR cohort showed lower programmed cell death protein 1 (PD-1) expression and had lower frequencies of Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17A+), and circulating follicular helper T (CXCR5+PD-1+) cells. Accordingly, the proportion of isotype-switched memory B cells (IgM-CD20hi) among B cells in the CR cohort showed a significantly lower proportion, although the level of the activation marker CD71 was elevated. For CD3-HLA-DR- lymphocytes in the CR cohort, in addition to lower levels of IFN-γ, granzyme B and T-bet, the correlation between T-bet and IFN-γ was not observed. Additionally, by taking into account the number of days after discharge, all the phenotypes associated with reduced function did not show a tendency toward recovery within 4‒11 weeks. The remarkable phenotypic alterations in lymphocytes in the CR cohort suggest that  severe acute respiratory syndrome coronavirus 2 infection profoundly affects lymphocytes and potentially results in dysfunction even after clinical recovery.


Subject(s)
CD8-Positive T-Lymphocytes/virology , COVID-19/blood , Leukocytes, Mononuclear/virology , SARS-CoV-2/pathogenicity , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Cell Lineage/genetics , Cell Lineage/immunology , Female , Gene Expression Regulation/immunology , Granzymes/genetics , Humans , Interferon-gamma/genetics , Leukocytes, Mononuclear/pathology , Male , Middle Aged , T-Box Domain Proteins/genetics , Th1 Cells/immunology , Th1 Cells/virology , Th17 Cells/immunology , Th17 Cells/virology , Th2 Cells/immunology , Th2 Cells/virology
20.
Mol Immunol ; 134: 109-117, 2021 06.
Article in English | MEDLINE | ID: covidwho-1142153

ABSTRACT

Th17 cells are a lineage of CD4+ T helper cells with Th17-specific transcription factors RORγt and RoRα. Since its discovery in 2005, research on Th17 has been in rapid progress, and increasing cytokines or transcription factors have been uncovered in the activation and differentiation of Th17 cells. Furthermore, growing evidence proves there are two different subsets of Th17 cells, namely non-pathogenic Th17 (non-pTh17) and pathogenic Th17 (pTh17), both of which play important roles in adaptive immunity, especially in host defenses, autoimmune diseases, and cancer. In this review, we summarize and discuss the mechanisms of Th17 cells differentiation, and their roles in immunity and diseases.


Subject(s)
Cell Differentiation/immunology , Th17 Cells/immunology , Humans , Yin-Yang
SELECTION OF CITATIONS
SEARCH DETAIL